FuseVis: Interpreting Neural Networks for Image Fusion Using Per-Pixel Saliency Visualization
نویسندگان
چکیده
منابع مشابه
Multifocus image fusion using artificial neural networks
Optical lenses, particularly those with long focal lengths, suffer from the problem of limited depth of field. Consequently, it is often difficult to obtain good focus for all objects in the picture. One possible solution is to take several pictures with different focus points, and then combine them together to form a single image. This paper describes an application of artificial neural networ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Pixel-Level Image Fusion using Kalman Algorithm
Data fusion aims at synergistic use of information and knowledge from different sources to aid in the overall understanding of a phenomenon. In the domain of remote sensing, where images are acquired by multiple sources or by the same source in multiple acquisition contexts, the data made available by different sources are complementary to each other, proper fusion of the data can bring better ...
متن کاملPixel Level Image Fusion using Fuzzylet Fusion Algorithm
Image fusion algorithms based on SWT (Stationary Wavelet Transform) and fuzzy logic were developed and demonstrated. It was observed that fusion using SWT with higher levels of decomposition provides better fusion results. Similarly, Fuzzy image fusion with more number of membership functions provides better results. SWT based image fusion algorithm produces better quality of fused images at th...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers
سال: 2020
ISSN: 2073-431X
DOI: 10.3390/computers9040098